Lemma 10.3

October-03-10 11:10 AM

Lemma 10.3. (i) The map $r: M_- \otimes M_- \to M_- \otimes M_-$ is acyclic. (ii) The maps $r, r^{op}: M_+^* \hat{\otimes} M_- \to M_+^* \hat{\otimes} M_-$ are acyclic.

Proof. (i) For any nonnegative integers m, n consider the mapping $\mathfrak{g}_+^{\otimes m} \otimes \mathfrak{g}_+^{\otimes n} \to S\mathfrak{g}_+ \otimes S\mathfrak{g}_+$, given by

$$(10.2) x_1 \otimes ... \otimes x_m \otimes y_1 \otimes ... \otimes y_n \to r(x_1...x_n1_- \otimes y_1...y_m1_-).$$

We need to show that this mapping is an acyclic function. We can do this by induction in N=m+n. If N=0, the operator is zero and the statement is clear. Assume the statement is proved for N=K-1 and let us prove it for N=K. Using the relation $[x\otimes 1+1\otimes x,r]=\delta(x),\,x\in\mathfrak{g}_+,$ we can reduce the question to the case m=K,n=0. In this case, the map is again zero, Q.E.D.

(ii) By the same reasoning as in (i), we get the statement for r. For r^{op} , we reduce the question to proving that the map $M_+^* \to M_+^* \hat{\otimes} M_-$ given by $v \to r^{op}(v \otimes 1_-)$ is acyclic.

Let $u = \text{Sym}(y_1...y_m)1_+ \in M_+, y_1, ..., y_m \in \mathfrak{g}_-$. Let us compute the expression

$$X = (u \otimes 1)(r^{op}(v \otimes 1_{-})) \in M_{-}.$$

We get

(10.3)
$$X = -(r^{op}(u \otimes 1))(v \otimes 1_{-}) = \sum_{i} \langle L(b^{i}, y_{1}, ..., y_{m})1_{+}, v \rangle a_{i}1_{-},$$

where a_i, b^i are dual bases of $\mathfrak{g}_+, \mathfrak{g}_-$, and L is a polynomial of commutators of $b^i, y_1, ..., y_m$ over \mathbb{Q} which is symmetric in $b_i, y_1, ..., y_m$ and depends only on m. Using the duality of \mathfrak{g}_+ and \mathfrak{g}_- , from (10.3) we get

(10.4)
$$X = \sum_{i} \langle b^{i} \otimes y_{1} \otimes ... \otimes y_{m}, D_{L}(v) \rangle a_{i} 1_{-}$$

where $D_L(v) \in S\mathfrak{g}_+$ is a linear combination of iterated cocommutators applied to v. This implies that $r^{op}(v \otimes 1_-)$ is a linear combination of iterated cocommutators applied to v, so the map $v \to r^{op}(v \otimes 1_-)$ is acyclic. \square

$$\S_{+}: S(g_{-}) \rightarrow M_{+} (u(g_{-}))$$

So $\S_{+}^{*}: M_{+}^{*} \rightarrow S(g_{+})$ by "PBW then sum of gluings".

Q what is the g_{-} moduls structure on $S(g_{+})$ compatible with the above?

Etingof - Kazhdan Page 1

Etingof - Kazhdan Page 2

