Lemma 10.3

October-03-10
11:10 AM
Lemma 10.3. (i) The map $r: M_{-} \otimes M_{-} \rightarrow M_{-} \otimes M_{-}$is acyclic.
(ii) The maps $r, r^{o p}: M_{+}^{*} \hat{\otimes} M_{-} \rightarrow M_{+}^{*} \hat{\otimes} M_{-}$are acyclic.

Proof. (i) For any nonnegative integers m, n consider the mapping $\mathfrak{g}_{+}^{\otimes m} \otimes \mathfrak{g}_{+}^{\otimes n} \rightarrow$ $S \mathfrak{g}_{+} \otimes S \mathfrak{g}_{+}$, given by

$$
\begin{equation*}
x_{1} \otimes \ldots \otimes x_{m} \otimes y_{1} \otimes \ldots \otimes y_{n} \rightarrow r\left(x_{1} \ldots x_{n} 1_{-} \otimes y_{1} \ldots y_{m} 1_{-}\right) . \tag{10.2}
\end{equation*}
$$

We need to show that this mapping is an acyclic function. We can do this by induction in $N=m+n$. If $N=0$, the operator is zero and the statement is clear. Assume the statement is proved for $N=K-1$ and let us prove it for $N=K$. Using the relation $[x \otimes 1+1 \otimes x, r]=\delta(x), x \in \mathfrak{g}_{+}$, we can reduce the question to the case $m=K, n=0$. In this case, the map is again zero, Q.E.D.

(ii) By the same reasoning as in (i), we get the statement for r. For $r^{o p}$, we reduce the question to proving that the map $M_{+}^{*} \rightarrow M_{+}^{*} \hat{\otimes} M_{-}$given by $v \rightarrow r^{o p}\left(v \otimes 1_{-}\right)$is acyclic.

Let $u=\operatorname{Sym}\left(y_{1} \ldots y_{m}\right) 1_{+} \in M_{+}, y_{1}, \ldots, y_{m} \in \mathfrak{g}_{-}$. Let us compute the expression

$$
X=(u \otimes 1)\left(r^{o p}\left(v \otimes 1_{-}\right)\right) \in M_{-}
$$

We get

$$
\begin{equation*}
X=-\left(r^{o p}(u \otimes 1)\right)\left(v \otimes 1_{-}\right)=\sum_{i}\left\langle L\left(b^{i}, y_{1}, \ldots, y_{m}\right) 1_{+}, v\right\rangle a_{i} 1_{-}, \tag{10.3}
\end{equation*}
$$

where a_{i}, b^{i} are dual bases of $\mathfrak{g}_{+}, \mathfrak{g}_{-}$, and L is a polynomial of commutators of $b^{i}, y_{1}, \ldots, y_{m}$ over \mathbb{Q} which is symmetric in $b_{i}, y_{1}, \ldots, y_{m}$ and depends only on m.

Using the duality of \mathfrak{g}_{+}and \mathfrak{g}_{-}, from (10.3) we get

$$
\begin{equation*}
X=\sum_{i}\left\langle b^{i} \otimes y_{1} \otimes \ldots \otimes y_{m}, D_{L}(v)\right\rangle a_{i} 1_{-} \tag{10.4}
\end{equation*}
$$

where $D_{L}(v) \in S \mathfrak{g}_{+}$is a linear combination of iterated cocommutators applied to v. This implies that $r^{o p}\left(v \otimes 1_{-}\right)$is a linear combination of iterated cocommutators applied to v, so the map $v \rightarrow r^{o p}\left(v \otimes 1_{-}\right)$is acyclic.

$$
\begin{aligned}
& \xi_{+}: S\left(g_{-}\right) \rightarrow M_{+}\left(u\left(y_{-}\right)\right) \\
& S_{0} \xi_{+}^{*}: M_{+}^{*} \rightarrow S\left(g_{+}\right) \text {by "PBW then sum of gluings". } \\
& Q \text { What is the } g \text {-modals structure on } S\left(g_{+}\right) \text {comprtishe } \\
& \text { with the above? }
\end{aligned}
$$

Action:
Dual action:

So -

Etingof - Kazhdan Page 2

Etingof - Kazhdan Page 3

